A collaborative, six-year study of carbon dioxide (CO2) levels in Beijing and surrounding provinces suggests that combustion efficiency, a component of overall energy efficiency, is improving in the region.
The findings, published in the September 21 issue of Atmospheric Chemistry and Physics, are generally consistent with official Chinese government statistics and could bolster their credibility as international negotiations proceed on commitments of China and other nations to combat climate change.
A team of atmospheric scientists and environmental engineers from Harvard University and Tsinghua University in Beijing have continuously measured atmospheric CO2 and carbon monoxide (CO) levels in rural Miyun, about 100 km northeast of Beijing, since November 2004.
Weather observations such as wind speed and direction (with other evidence) allowed researchers to identify plumes of polluted air from the Beijing urban area and population centers to the south, as opposed to relatively clean air arriving from the north.
October 9, 2010
October 6, 2010
Switching off your lights has a bigger impact than you might think, says new study
The power stations that supply electricity vary in their carbon dioxide emission rates, depending on the fuel they use: those that burn fossil fuels (coal, gas and oil) have higher emissions than those driven by nuclear power and wind. In general only the fossil fuel power stations are able to respond instantly to changes in electricity demand.
Dr Adam Hawkes, the author of the new study from the Grantham Institute for Climate Change at Imperial College London, says the government should keep track of changing carbon emission rates from power stations to ensure that policy decisions for reducing emissions are based on robust scientific evidence. The new study suggests that excluding power stations with low carbon emission rates, such as wind and nuclear power stations, and focussing on those that deal with fluctuating demand would give a more accurate emission figure.
Dr Adam Hawkes, the author of the new study from the Grantham Institute for Climate Change at Imperial College London, says the government should keep track of changing carbon emission rates from power stations to ensure that policy decisions for reducing emissions are based on robust scientific evidence. The new study suggests that excluding power stations with low carbon emission rates, such as wind and nuclear power stations, and focussing on those that deal with fluctuating demand would give a more accurate emission figure.
Study sheds new light on how the sun affects the Earth's climate
The Sun's activity has recently affected the Earth's atmosphere and climate in unexpected ways, according to a new study published today in the journal Nature. The study, by researchers from Imperial College London and the University of Colorado, shows that a decline in the Sun's activity does not always mean that the Earth becomes cooler.
It is well established that the Sun's activity waxes and wanes over an 11-year cycle and that as its activity wanes, the overall amount of radiation reaching the Earth decreases. Today's study looked at the Sun's activity over the period 2004-2007, when it was in a declining part of its 11-year activity cycle.
Although the Sun's activity declined over this period, the new research shows that it may have actually caused the Earth to become warmer. Contrary to expectations, the amount of energy reaching the Earth at visible wavelengths increased rather than decreased as the Sun's activity declined, causing this warming effect.
It is well established that the Sun's activity waxes and wanes over an 11-year cycle and that as its activity wanes, the overall amount of radiation reaching the Earth decreases. Today's study looked at the Sun's activity over the period 2004-2007, when it was in a declining part of its 11-year activity cycle.
Although the Sun's activity declined over this period, the new research shows that it may have actually caused the Earth to become warmer. Contrary to expectations, the amount of energy reaching the Earth at visible wavelengths increased rather than decreased as the Sun's activity declined, causing this warming effect.
October 5, 2010
Climate change affects horseshoe crab numbers
Having survived for more than 400 million years, the horseshoe crab is now under threat – primarily due to overharvest and habitat destruction. However, climatic changes may also play a role. Researchers from the University of Gothenburg reveal how sensitive horseshoe crab populations are to natural climate change in a study recently published in the scientific journal Molecular Ecology.
The horseshoe crab is often regarded as a living fossil, in that it has survived almost unchanged in terms of body design and lifestyle for more than 400 million years. Crabs similar to today's horseshoe crabs were walking the Earth long before the dinosaurs.
The horseshoe crab is often regarded as a living fossil, in that it has survived almost unchanged in terms of body design and lifestyle for more than 400 million years. Crabs similar to today's horseshoe crabs were walking the Earth long before the dinosaurs.
October 3, 2010
A painless way to achieve huge energy savings: Stop wasting food
Scientists have identified a way that the United States could immediately save the energy equivalent of about 350 million barrels of oil a year — without spending a penny or putting a ding in the quality of life: Just stop wasting food. Their study, reported in ACS' semi-monthly journal Environmental Science & Technology, found that it takes the equivalent of about 1.4 billion barrels of oil to produce, package, prepare, preserve and distribute a year's worth of food in the United States.
Michael Webber and Amanda Cuéllar note that food contains energy and requires energy to produce, process, and transport. Estimates indicate that between 8 and 16 percent of energy consumption in the United States went toward food production in 2007. Despite this large energy investment, the U.S. Department of Agriculture estimates that people in the U.S. waste about 27 percent of their food. The scientists realized that the waste might represent a largely unrecognized opportunity to conserve energy and help control global warming.
Michael Webber and Amanda Cuéllar note that food contains energy and requires energy to produce, process, and transport. Estimates indicate that between 8 and 16 percent of energy consumption in the United States went toward food production in 2007. Despite this large energy investment, the U.S. Department of Agriculture estimates that people in the U.S. waste about 27 percent of their food. The scientists realized that the waste might represent a largely unrecognized opportunity to conserve energy and help control global warming.
October 1, 2010
Genetically Altered Trees and Plants Could Help Counter Global Warming
Forests of genetically altered trees and other plants could sequester several billion tons of carbon from the atmosphere each year and so help ameliorate global warming, according to estimates published in the October issue of BioScience.
The study, by researchers at Lawrence Berkeley National Laboratory and Oak Ridge National Laboratory, outlines a variety of strategies for augmenting the processes that plants use to sequester carbon dioxide from the air and convert it into long-lived forms of carbon, first in vegetation and ultimately in soil. Besides increasing the efficiency of plants' absorption of light, researchers might be able to genetically alter plants so they send more carbon into their roots—where some may be converted into soil carbon and remain out of circulation for centuries.
The study, by researchers at Lawrence Berkeley National Laboratory and Oak Ridge National Laboratory, outlines a variety of strategies for augmenting the processes that plants use to sequester carbon dioxide from the air and convert it into long-lived forms of carbon, first in vegetation and ultimately in soil. Besides increasing the efficiency of plants' absorption of light, researchers might be able to genetically alter plants so they send more carbon into their roots—where some may be converted into soil carbon and remain out of circulation for centuries.
Subscribe to:
Posts (Atom)